
Experiences on
using GPU
accelerators for
data analysis in
ROOT/RooFit

Sverre Jarp, Alfio Lazzaro, Julien Leduc,

Yngve Sneen Lindal, Andrzej Nowak
European Organization for Nuclear Research (CERN), Geneva, Switzerland

Workshop on Future Computing in Particle Physics, e-Science Institute,

Edinburgh (UK)

June 15th−17th, 2011

Tiny OpenCL intro

 OpenCL device abstractions

 Different hardware/SDKs/drivers are represented by

different «platform» objects

 A platform object can have a range of devices (of course,

if you have them physically)

 An example
 cl_platform platform;

 cl_device device;

 cl_context context;

 cl_command_queue queue;

 cl_int status;

 clGetPlatformIDs(1, &platform, NULL);

 clGetDeviceIDs(platform, CL_DEVICE_TYPE_GPU, 1, &device, NULL);

 context = clCreateContext(NULL, 1, &device, NULL, NULL, &status);

 queue = clCreateCommandQueue(context, device, 0, &status);

Yngve Sneen Lindal (yngve.sneen.lindal@cern.ch)

Tiny OpenCL intro

 Declaring a computational kernel
__kernel void evaluatePdfGaussian(__const double mu, __const double sigma, __global const double *data,

__global double *results, __const int N)

{

 int i = get_global_id(0);

 if (i >= N) return;

 double x = data[i];

 double temp = (x-mu)/sigma;

 temp *= temp;

 results[i] = exp(-0.5*temp);

}

 Executing a computational kernel
//Assume we have the required arguments and a kernel object for the Gaussian kernel above

clSetKernelArg(evaluatePdfGaussian, 0, sizeof(float), (void*)&mu);

clSetKernelArg(evaluatePdfGaussian, 1, sizeof(float), (void*)&sigma);

clSetKernelArg(evaluatePdfGaussian, 2, sizeof(cl_mem), (void*)&data);

clSetKernelArg(evaluatePdfGaussian, 3, sizeof(cl_mem), (void*)&results);

clSetKernelArg(evaluatePdfGaussian, 4, sizeof(int), (void*)&N);

size_t workGroupSize = 128; //e.g.

size_t numWorkGroups = N % workGroupSize == 0 ? N/workGroupSize : N/workGroupSize + 1;

size_t total = workGroupSize * numWorkGroups;

clEnqueueNDRangeKernel(queue, evaluatePdfGaussian, 1, NULL, &total, &workGroupSize, 0, NULL, NULL);

 Yngve Sneen Lindal (yngve.sneen.lindal@cern.ch)

GPU Implementation (OpenCL)

 With OpenMP, each thread can evaluate the tree top-down directly in fully

parallel. Using a GPU requires an explicit call to a kernel inside each PDF

(see 2nd illustration), suggesting lower parallel efficiency.

 Leads to larger serial fraction, many kernel calls and in general, stalls

 Data is uploaded once, in the beginning of the run.

Yngve Sneen Lindal (yngve.sneen.lindal@cern.ch)

GPU Implementation (OpenCL)

 Parallel block-wise reduction is used. Improves the speedup significantly

(uses GPU shared mem)

 Double precision and general accuracy requirements prevents using

native transcendental units and also limits performance in general (GPUs

are made for single-precision primarily)

 Not memory-bound (on an Nvidia GTX470, at least) since we’re doing

expensive computations, so texture cache has no effect

 Straight-forward implementation. No possibility to use e.g. shared

memory (except for reduction). But this is also beneficial from a user

perspective

5 Yngve Sneen Lindal (yngve.sneen.lindal@cern.ch)

Downsides

 Introduces more expressive code when setting up environment and e.g.

calling kernels.

 Duplication of code since we now use an OpenCL compiler in addition to

the C/C++ compiler

 May be necessary to explicitly program with vector types to exploit

performance on AMD cards (we have not tested this yet).

 We have also tried OpenCL for CPUs. Our experiences:

 Have to use vector types to achieve vectorization. But even then AMDs

OpenCL compiler does not vectorize transcendentals for instance

 To obtain performant code, it is necessary to do more work per OpenCL

thread. Like doing work by hand instead of making a computer do it…

 Talked to Intel OpenCL guru today, he says that this is not the case with

Intels implementation

 It would of course be nice to have one unified programming model for

any device, but that seems like somewhat of a silver bullet so far…

 Yngve Sneen Lindal (yngve.sneen.lindal@cern.ch)

GPU Test environment

 PC (host)
 Desktop system

 CPU: Intel Nehalem @ 3.2GHz: 4 cores – 8 hardware threads

 Linux 64bit, Intel C++ compiler version 11.1

 GPU: ASUS nVidia GTX470 PCI-e 2.0
 Commodity card (for gamers)

 Architecture: GF100 (Fermi)

 Memory: 1280MB DDR5

 Core/Memory Clock: 607MHz/837MHz

 Maximum # of Threads per Block: 1024

 Number of SMs: 14

 Power Consumption 200W

 Price ~$300 (July 2010)

7 Yngve Sneen Lindal (yngve.sneen.lindal@cern.ch)

Performance

 This is not a fair “CPU vs GPU” comparison because of different algorithm

Yngve Sneen Lindal (yngve.sneen.lindal@cern.ch)

Conclusion

• The two algorithms (OpenMP and OpenCL) can coexist seamlessly in the

application

• Up to a factor 2.5x (on our tests) with respect to OpenMP with 8 SMT

threads (i7 965 and GTX470). The CPU scalability compared to one core is

~4.6x.

• GPUs behaves better with more events, as expected

• Seems ideal to load-balance, since equally priced products perform

comparable

• It is clear that reduction must be done on the GPU to achieve high GPU

performance. This reduction is deterministic, which can be a requirement

from minimization algorithms

• We have measured the GPU idle percentage to be around 12% in ideal

cases, which is not too bad, taking the algorithm into account

Yngve Sneen Lindal (yngve.sneen.lindal@cern.ch)

Conclusion

• Note that our target is running at the user-level on the GPU of small

systems (laptops, desktops), i.e. with small number of CPU cores

and commodity GPU cards

• Comparisons with a GPU Tesla card is more appropriate with a

CPU server system, which is not our goal

• Main limitation is the algorithm and the double precision

• Small limitation due to CPUGPU communication

• Soon the code will be released in the standard RooFit (discussion

with the authors of the package ongoing)

10 Yngve Sneen Lindal (yngve.sneen.lindal@cern.ch)

Current/future developments

• Try the code on LHC analyses

• Test vector types on AMD cards to see if they have any performance effect

• Concurrent execution on CPU with OpenMP and GPU with OpenCL

11 Yngve Sneen Lindal (yngve.sneen.lindal@cern.ch)

